Characterization of Coupled Hydrologic-Biogeochemical Processes using Geophysical Data

Susan S. Hubbard, Jill Banfield, Ken Williams, Mary DeFlaun, Frank Morrison and Guoxian Zhang

*1 Lawrence Berkeley National Laboratory
*2 UC Berkeley
*3 GeoSyntek

- * Project Conception: Problem Statement & Previous Research
- EMSP Project 86922: New Start
 - Objectives
 - Current Experiment
 - Expected Project Results

Statement of the Problem

Large spatial and temporal variability of hydrogeological-biogeochemical parameters in natural systems renders characterization/monitoring of subsurface processes difficult;

- Conventional field characterization and monitoring techniques are often inadequate:
 - Difficulty in getting information about **horizontal** or **field-scale** variability;
 - Requires drilling, which disturbs subsurface and is prohibitive in contaminated areas.
- **◆** As a consequence, characterization/monitoring is insufficient at the field scale:
 - Remediation schemes can be unnecessarily expensive, ineffective, or difficult to assess away from treatment well(s)
 - Inadequate data available to investigate **coupled processes** *AT THE FIELD SCALE*.
- **◆ Investigate potential of geophysical methods for monitoring system transformations and for understanding coupled processes.....**

Hubbard et al., WRR 37(10), 2001

*Tomography Estimates useful for **improving chemical transport predictions** (Scheibe et al., Ground Water, 2003) and for **understanding bacterial transport** as a function of hydrogeological heterogeneity (Mallioux et al., WRR, 2003).

Moving Forward: Monitoring System Transformations during Remediation using Geophysical Data

- Many remediation approaches also induce system transformations (gas, biofilm and precipitation formation)
- These processes are dynamic, complex, and coupled

- Extremely difficult to understand using wellbore data
- Investigate utility of geophysical methods for providing information about system transformations over space and time
 - * Radar, Seismic and Electrical Methods
 - Lab and Field Scale

Chapelle,

2000

Expected Geophysical Signatures associated with Reaction Products & Hydrogeological Heterogeneity

Examples of Reactions associated with remediation treatments:

- Organic Carbon + Electron Acceptor + Nutrient \Rightarrow Biomass + CO₂ + other
- DOC + NO₃ \Rightarrow CH₂O (biomass) + CO₂ + N₂
- Chlorinated Solvent + Permanganate \Rightarrow Precipitate + CO₂ +Anions
- DOC + $SO_4 \Rightarrow Biomass + Sulfide$

Examples of geophysical responses to reaction products and hydrogeology:

Geophysical Method	Geophysical Attribute	Gas Evolution	Precipitation Formation	Biofilm Formation
Radar	Velocity	Increase	Increase	Increase (?)
	Amplitude	Increase	Variable	Increase?
Seismic	Velocity	Decrease	Increase	Increase
	Amplitude	Decrease	?	?
Electrical	Conductivity	Decrease	Variable	Increase

cecerci i

Preliminary Lab Experiment: using Seismic Amplitudes to detect gas generation

*Cross-column seismic measurements

Evaluate seismic signal amplitude as a function of gas production

- *K measured using constant head tests
- * Gas sampling of evolved N₂

Electron Donor: Nitrate

Carbon Source: Acetate

Microbe:

Pseudomonas Stutzeri (courtesy PNNL)

Grown to $\sim 2 \times 10^7$ cells/gram sand and suspended in a nutrient depleted growth media

Ken Williams with assist from Mary Firestone (UCB) and Fred Brockman (PNNL). In preparation for ES&T

Earth Sciences Division • Lawrence Berkeley National Laboratory

Preliminary Radar Experiment: Monitoring of Gas Evolution during biostimulation of OY-107

Probe 1

Ksat

Seismic Columns

Probe 2

Probe 3

Electron
Acceptor:
Nitrate, Initial
Concentration

~300mg/L

Carbon Source:
Acetate

Microbe: OY107
Acidovorax

Grown to $\sim 2 \times 10^7$ cells/gram in sand and suspended in a nutrient depleted growth media

Dielectric measurements collected every hour at each probe for 40 days

Hydraulic Conductivity and Geophysical Responses associated with N2 gas production during Stimulation

Preliminary Field-Scale Biostimulation Monitoring using Time-Lapse Seismic Tomography

Lactate Injection Well

13 Hours

Decrease

Variations in seismic amplitude correlated with N2 production near the wellbore AT THE FIELD SCALE

Mailloux et al.,

Change in Seismic Attenuation (blue=gas)

ATTENUATION (NEPERS)

Increase

EMSP NEW START: RESEARCH OBJECTIVES AND APPROACH

- 1) Understand **potential of geophysical methods** to characterize and monitor hydrogeological/biogeochemical parameters/processes:
 - * at lab and field scale
 - * in the presence of natural heterogeneity
- 2) Use geophysical-hydrogeological-biogeochemical data to **investigate coupled processes**:
 - *onset of correlated mineralogical-biogeochemical gradients within columns
 - * interactions and dynamics of hydrological-biogeochemical alterations,
 - * microbiological induced nanopartical formation and influence on flow

Additional: Improve representation of coupled processes in advanced transport codes

Proposed Column Experiments

CO-LOCATED MEASUREMENTS:

Geophysical (seismic, radar, electrical), Hydrogeological, Microbiological and Geochemical -

EXPERIMENTS:

Hydrogeological Heterogeneity:				Field Sediments/GW	
Potential Treatments:	Low K	High K	Mixed K	Sieved Seds.	Natural Seds.
Chemical	X	X	X		
Oxidation					
Biostimulation to	X	X	X	X?	X?
induce					
precipitates,					
gasses and					
biofilms					

Examples: Bayesian or MCMC Approaches (Chen et al., 2002, 2001; Hubbard et al., 2001)

BIOGEOCHEMICAL "POINT" MEASUREMENTS

Experiment Series #1: Microbe-Induced Sulfide Precipitation in Porous Granular Media

- Controlled Conditions:
- Well-defined, saturated sediments of known grain size
- Introduction of single microbial strain
- Infiltration using defined medium with fixed substrate and metal concentrations
- Fixed rate of advection

Experiment Series #1: Microbe-Induced Sulfide Precipitation in Porous Granular Media

- Common soil borne and aquifer SRB
- Moderately aerotolerant; no significant reduction in cell numbers after ~4-6hr of O₂ exposure
- Parallel studies being conducted at LBNL/UCB (Genomes to Life)
- 0.8 x 1.0um in size; free-living growth habit in liquid culture conditions / possible biofilm formation in granular medium

60x Optical Microscope Live/Dead Image

Widdel et al., The Prokaryotes, 1992.

Experiment Series #1: Microbe-Induced Sulfide Precipitation in Porous Granular Media

Expected Stoichiometric Reactions:

1) SRB reduces sulfate while oxidizing lactate to acetate:

$$2CH_{3}CHOHCOO^{-} + SO_{4}^{2-} \rightarrow 2CH_{3}COO^{-} + 2HCO_{3}^{-} + 0.5H_{2}S + 0.5HS^{-} + 0.5H^{+}$$

2) Generated bisulfide reacts with metals to form metal sulfides:

$$0.5 \text{Fe}^{2+}$$
, $0.5 \text{Pb}^{2+} + 0.5 \text{HS}^{-} \rightarrow 0.5 \text{FeS}$, PbS + 0.5H^{+}

Composite Reaction:

$$2\text{CH}_{3}\text{CHOHCOO}^{-} + \text{SO}_{4}^{2-} + 0.5\text{Fe}^{2+}, 0.5\text{Pb}^{2+} \rightarrow 2\text{CH}_{3}\text{COO}^{-} + 0.5\text{FeS}, \text{PbS} + 2\text{HCO}_{3}^{-} + 0.5\text{H}_{2}\text{S} + \text{H}^{+}$$

Liquid culture of *D. vulgaris* after 3 days on defined medium (~10⁸ cells/mL)

Addition of 70ppm Fe²⁺ (aq)

Rapid production of Metal Sulfides under Stimulated Conditions!!

Earth Sciences Division • Lawrence Berkeley National Laboratory

Experiment Series #1: Microbe-Induced Sulfide Precipitation in Porous Granular Media

Mimic Subsurface Using Flow-Through Column Experiments:

Experiment Series #1: Microbe-Induced Sulfide Precipitation in Porous Granular Media

- Simultaneous Measurements on Control and Innoculated Columns: Biogeochemical, Hydrological and Geophysical
 - ***** Multiport Biogeochemical Sampling:
 - Fluid chemistry (anions, cations, metals, pH) using ion chromatography, ion coupled plasma, etc.
 - Biomass sampling (quantitative live/dead, PLFA)
 - Nanoparticle and/or flocculate sampling and analysis (XRD, SEM, TEM)
 - Chemical results directly feed modeling effort

Experiment Series #1: Microbe-Induced Sulfide Precipitation in Porous Granular Media

- Simultaneous Column Experiments (cont'd.)
 - * Hydraulic Conductivity
 - ***** Geophysical Measurements:
 - Radar
 - Seismic
 - Electrical
 - Complex Resistivity (1-10⁵Hz) and Streaming potentials
 - Non-polarizing (i.e. lownoise) AgCl potential electrodes
 - Gold current electrodes

Experiment Series #1: Microbe-Induced Sulfide Precipitation in Porous Granular Media

Preliminary Column Test:

- Flow-through of innoculum
- Advection rate = 7cm/day
- Non-diluted growth medium with 10ppm Fe²⁺

Observations

- Noticeable black precipitate (FeS) after only 2-3 days
- Gradational precipitation front
- Slight reduction in effluent pH (7.1 to 6.8)
- Gas generation (CO₂, acetate?)

♦ Forthcoming Column Tests:

- Seismic Measurements
 - Decreases expected in amplitudes due to gases; increases expected in velocity due to increasing bulk density (mineral precipitates)
- · Radar Measurements
 - Decreases in dielectric associated with gases and possibly sulfides
- Electrical methods
 - ▶ Changing complex electrical response and streaming potentials; increasing apparent resistivity due to precipitation of *polarizable* minerals (sulfides) and more resistive oxides
- Hydraulic Measurement
 - Pore throat plugging (gases, minerals)
- Biogeochemical Measurements
 - refer to modeling results...

Mechanics of Coupled Numerical Model BIOCORE (Zhang, 2000)

- Mass transfer between phases of given species: adsorption/desorption of chemical species and attachment/detachment of microbial species
- Reactions among aqueous chemical species: acid-base, redox and complexations reactions and competition, metabiosis and endogeneous respiration among microbial species
- Mass transfer between phases of different species: ion exchange
 - Mass transfer between phases: mineral dissolution-precipitation

Earth Sciences Division • Lawrence Berkeley National Laboratory

Pre-Experimental Biogeochemical Interaction Simulations using BIOCORE

At 4 days: (steady state reached at ~30 days)

Species Microbes Desulfovibrio vulgaris 16 Primary H₂O, H⁺, Citrate⁻, Lactate⁻, SO4⁻², HCO₃⁻, SiO₂(aq), HPO₄⁻², CΓ, NO₃⁻, Aqueous $Na^+, K^+, Ca^{+2}, Mg^{+2}, Fe^{+2}, O_2(aq)$ **Species** HS⁻, H₂S(aq), MgHPO₄(aq), CO₂(aq), MgHCO₃⁺, NaHCO₃(aq), CaHPO₄(aq), H₂PO₄, CaHCO₃, FeHCO₃, CaNO₃, NaHPO₄, MgPO₄, Methane(aq), NaCl(aq), MgCl⁺, FeHPO₄(aq), MgCO₃(aq), CaCO₃(aq), CaPO₄⁻, CO₃⁻², FePO₄⁻, FeCO3(aq), NaHSiO₃(aq), HSiO₃⁻, 62 CaCl⁺, Acetic acid(aq), MgP2O₇⁻², NaCO₃⁻, MgSO4(aq), OH⁻, FeOH⁺, Secondary NaSO₄⁻, FeCl⁺, CaSO₄(aq), CaP₂O₇⁻², S⁻², PO₄⁻³, CaCL₂(aq), CaOH⁺, S₂⁻², FeSO₄(aq), H₂(aq), NaOH(aq), HP₂O₇⁻³, S₃⁻², Acetate⁻, NaHP₂O₇⁻², H₃PO₄(aq), NaP₂O₇⁻³, Na₂P₂O₇⁻², P₂O₇⁻⁴, Fe(OH)₂(aq), H₂P₂O₇⁻², S₄⁻², Aqueous Species HCl(aq), MgCH₃COO⁺, H₂SiO₄⁻², H₆(H₂SiO₄)₄⁻², S₂O₃⁻², NaCH₃COO(aq). Fe^{+3}

7 Minerals Siderite, Calcite, Pyrite, Quartz, Dolomite, Greenalite, Troilite,

Forthcoming Field Studies

D-Area Coal Pile Runoff Basin, SRS.
 Characteristics:

- ❖ Contamination: Runoff from coal storage produced contaminants (sulfate, Al, Fe, Pb,Mg, Zn..~1/2 mile from the Savannah River). Percolation of acid-sulfate waters are key concern.
- Geology: Heterogeneous interbedded sand, silt, clay layers (porous granular).
- Hydrology: Water table 0-15ft BGS, aquifer of interest ~45-55' BGS.
- Remediation: Many remediation approaches are being considered, including sulfate reduction to immobilize metals via stimulation (Charles Turick, Michael Heitkamp, SRS).

Other Sites?

Project Summary and Expected Results

PROJECT SUMMARY

- ◆ Components: Theoretical, numerical, stochastic, and experimental
- ◆ Interdisciplinary: Hydrogeology-Geophysics-Biogeochemistry-Statistics
- ◆ Multiple Scales of Investigation: Lab and Field

EXPECTED RESULTS

- ◆ Potential of using **geophysical methods as a minimally invasive, cost- effective, and field-scale approach** for investigating and monitoring system transformations;
- Investigate Coupled processes that influence contaminant transport and remediation;
- ◆ Improved representation of coupled biogeochemical-hydrological processes in advanced numerical transport models;
- ◆ Assist in assessing the efficacy of remediation at a DOE field site.

The end

